Über den Einsatz von KI für die Luftbildauswertung beim Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN) hatte ich bereits in “LGLN-News: basemap.de demnächst mit KI in der Luftbildauswertung” [1] berichtet. Nun gab es im Dezember ein Update vom LGLN “Building footprints Oldenburg derived from aerial imagery” [2], [3]. Die kompletten Gebäude der Stadt Oldenburg wurden “durch eine Deep-Learning-basierte Bildsegmentierung” berechnet, als Ergebnisdaten stehen 78038 georeferenzierte Gebäude- Polygone unter der CC0-Lizenz frei downloadbar zur Verfügung.
Ich habe mir die Daten im GeoJSON-Format (59.1 MB) [4] geladen und dann im QGIS visualisiert und … Hut ab, es ist schon erstaunlich, mit welch hoher Trefferquote und Präzision die Kollegen um Dr. Jonas Bostelmann KI-automatisiert die Gebäude generieren. Urteilt selbst, hier ein paar Screenshots meines QGIS-Projektes. Die Gebäude wurden über das Item „Confidience“ als Maß für die Genauigkeit der Erkennung klassifiziert.
Update 18.01.2024, 14:15 Uhr: Die Daten im GeoJSON-Format (72,0 MB) [6] wurden heute aktualisiert (vgl. auf 1. Kommentar von Jonas)
Hier der Original-Tweet [2]:
Noch mehr auf Youtube [5] in 4K:
[1] … https://geoobserver.de/2023/02/16/lgln-news-basemap-de-demnachst-mit-ki-in-der-luftbildauswertung/
[2] … https://x.com/JonasBostelmann/status/1737508840852070782
[3] … https://zenodo.org/records/10401144
[4] … https://zenodo.org/records/10401144/files/building_footprints_Oldenburg.geojson?download=1
[5] … https://www.youtube.com/watch?v=ZPhvUIjvfbQ&t=60s
[6] … https://zenodo.org/records/10526811
Danke für das Runterladen, Testen und das positive Feedback. Wir haben zufällig gerade heute eine neue Version 1.1 der Daten hochgeladen. Dort sind jetzt auch Informationen zur Höhe der Gebäude enthalten: https://zenodo.org/records/10526811Viele GrüßeJonas
Danke für den Tipp, ich habe es als Update im Beitrag ergänzt 🙂
Pingback: Deep-Learning: KI Gebäudeerkennung am LGLN | #geoObserver